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Abstract--The local instant formulation of mass, momentum and energy conservations of two- 
phase flow has been developed. Distribution, an extended notion of a function, has been introduced 
for this purpose because physical parameters of two-phase flow media change discontinuously at 
the interface and the Lebesgue measure of an interface is zero. Using a characteristic function of 
each phase, the physical parameters of two-phase flow have been defined as field quantities. In 
addition to this, the source terms at the interface are defined in terms of the local instant interfacial 
area concentration. Based on these field quantities, the local instant field equations of mass, 
momentum and total energy conservations of two-phase flow have been derived. Modification of 
these field equations gives the single field representation of the local instant field equations of 
two-phase flow. Neglecting the interracial force and energy, this formulation coincides with the field 
equations of single-phase flow, except in the definition of differentiation. The local instant two-fluid 
formulation of two-phase flow has also been derived. This formulation consists of six local instant 
field equations of mass, momentum and total energy conservations of both phases. Inteffaciai mass, 
momentum and energy transfer terms appear in these equations, which are expressed in terms of 
the local instant interracial area concentration. 

1. I N T R O D U C T I O N  

Two-phase flow phenomena are of extreme importance in various fields of science and 
technology such as geophysics, nuclear engineering, chemical engineering etc. In analyzing 
two-phase flow phenomena, one needs a set of basic equations which describe the 
conservations of mass, momentum and energy of two-phase flow media. 

For single-phase flow, such basic equations are rigorously given in the form of mass, 
momentum and energy balances in infinitesimal volume, dr, and infinitesimal time 
duration, dt. These equations constitute the local instant field equations for density, 
velocity and energy, which can be applied to all the volume and time domains under 
consideration. 

However, for two-phase flow, such local instant field equations have not been attainable 
without adopting appropriate averaging and/or modeling. Traditionally, the earliest model 
of two-phase flow is the homogeneous mixture model. In this model, both phases are 
assumed to be completely mixed and move with the same speed. Based on these 
assumptions, the density, velocity and energy of the two-phase mixture are defined and 
the local instant field equations of mass, momentum and energy conservations obtained. 

Zuber & Findley (1965), Wallis (1969), Ishii (1977) and Ishii & Zuber (1979) have taken 
into consideration the diffusion effects of each phase, which mean that the two-phase move 
with different speeds. This model is called the "drift flux model" and has been widely used 
in two-phase flow analyses. 

Truesdel et al. (1984) have applied rational thermodynamics to the mixture model of 
two-phase flow and obtained useful results for fluid suspensions etc. Although the mixture 
model has formulated local instant field equations of two-phase flow, it has limitations due 
to the assumptions on which it is based. In this model, it is assumed that in any small 
volume of mixture, both phases coexist. This assumption is acceptable when one phase is 
finely dispersed in the other, such as the suspension of fine panicles in fluid etc. However, 
when the size of the dispersed phase increases appreciably, this model cannot help showing 
some deviations from reality. 

Another direction of two-phase flow formulation has been pursued by Ishii 
(1975), Delhaye (1968), Delhaye et al. (1981), Bour6 (1973), WaUis (1969) and 
Kocamustafaogullari (1971), Banerjee & Chart (1980) and Banerjee (1980) among others. 

745 



746 ~ KATAOKA 

They have developed the two-fluid model (or separated flow model) formulation of 
two-phase flow. In this model, each phase is treated separately and the interface is regarded 
as a moving boundary. In each phase, the local instant conservation equations in 
single-phase flow can be written down. In addition, at the interface, local instant balances 
of mass, momentum and energy are formulated as boundary conditions. The above- 
mentioned equations are then averaged over time and space domains. Using several 
integral theorems (Leibniz's rule, Gauss's theorem etc.) the averaged field equations of 
density, velocity and energy are derived, respectively, for each phase. This formulation 
accurately reflects the physical aspects of two-phase flow. However, the field equations 
obtained are given in averaged forms in a certain volume or over a certain time period. 
Local instant balances of mass, momentum and energy in two-phase flow are not 
represented in the form of field equations. It should be noted that the local instant 
formulations used in the two-fluid model described above are valid only in each phase or 
at the interface, they are not the local instant field equations which are valid for all the 
space and time domains under consideration. 

In view of the above, it is highly desirable that the local instant field equations of mass, 
momentum and energy conservation of two-phase flow are formulated without any 
averaging and/or modeling. Based on this formulation, various averaging procedures of 
the basic equations can be done easily without using complicated integral theorems. 
Furthermore, it facilitates statistical averaging of the basic equations of two-phase flow. 
Some statistical treatments have been already applied to the local interfacial area 
concentration (Kataoka et al. 1984). Recent developments in measurement techniques 
for two-phase flow (laser anemometry etc.) have provided detailed knowledge of the 
microscopic structures of two-phase flow. Based on these data and the present formulation, 
statistical treatment of two-phase flow is now possible. Such a formulation will be 
particularly useful in analyzing the microscopic structures of two-phase flow (turbulence 
etc.) and in evaluating the applicability of various two-phase flow models. 

In two-phase flow fields, density, velocity and energy change discontinuously at the 
interface. Therefore, when one considers the local instant balances of mass, momentum 
and energy, one inevitably faces the differentiation of the discontinuous functions which 
represent the density, velocity and energy fields. Such differentiation cannot be executed 
in the ordinary notion of a function (Schwartz 1950, 1961). 

Furthermore, in two-phase flow fields, interfaces play an important role in mass, 
momentum and energy transfer. Therefore, source term functions must be defined at the 
interface. However, since the Lebesgue measure of an interface is zero in three-dimensional 
space, again such source term functions cannot be represented by the ordinary notion of 
a function (Schwartz 1950, 1961). 

These difficulties in mathematical treatment are considered to be the main reason why 
the local instant field equations of two-phase flow have not been obtained so far. 

The difficulties mentioned above can be overcome by introducing "distribution", the 
theory of which has been mathematically established by Schwartz (1950, 1961). It is an 
extended notion of a function and, in the meaning of "distribution", the differentiation 
of a discontinuous function is possible in any higher order derivative. Furthermore, the 
source term function at zero Lebesgue measure can be represented in terms of distribution. 

Traditionally, one example of distribution was previously invented by Dirac (1958) and 
has been widely used in physics and engineering without mathematical verification. In 
averaging theory of two-phase flow, this distribution has been conveniently used by Gray 
& Lee (1977). 

Recently, Kataoka et al. (1984) have derived the local instant formulation of the 
interfacial area concentration of two-phase flow in terms of distribution. This local instant 
interfacial area concentration is indispensable when considering the local instant balances 
of mass, momentum and energy in two-phase flow. 

In this paper, using the local instant interfacial area concentration and differentiation 
of discontinuous functions in the meaning of distribution, the local instant field equations 
of mass, momentum and energy conservation in two-phase flow are derived. 



LOCAL INSTANT FORMULATION OF TWO-PHASE FLOW 747 

2. LOCAL INSTANT REPRESENTATION OF THE PHYSICAL 
PARAMETERS IN TWO-PHASE FLOW 

In order to formulate the local instant field equations of mass, momentum and energy 
conservation of two-phase flow, it is necessary to represent the physical parameters of 
two-phase flow, such as density, velocity, internal energy etc. as field quantities. This means 
that these physical parameters must be expressed by appropriate functions which are 
defined in all the space and time domains under consideration. 

For this purpose, the characteristic function of each phase will be introduced here. One 
defines the equation which represents the interface by 

f ( x ,  y, z, t) = 0. [11 

Here, the interface can be a single continuous surface or a group of closed surfaces which, 
for example, reflect bubbles in gas-liquid two-phase flow. 

Using [1], the regions where phases 1 and 2 exist can be defined by following relations: 

for phase 1, f ( x ,  y, z, t) > 0; [2] 

and 

for phase 2, f ( x ,  y, z, t) < 0. [3] 

Then the characteristic function of each phase, ~k(X, y, Z, t) (k = 1, 2) can be introduced 
by 

dpl(x, y, z, t)  = h[ f ( x ,  y, z , / )]  

(characteristic function for phase 1) [4] 

and 

dP2(x, y, z, t)  = 1 - h [ f ( x ,  y, z, t)] 

(characteristic function for phase 2). [5] 

Here, h ( w )  is the Heaviside function which is defined by 

h(w)=O ( w < 0 ) = l  (w>0). [6] 

For example, when phases 1 and 2 represent gas and liquid phases, respectively, 
~(x ,  y, z, t) can be called the "local instant void fraction" which takes a value of zero or 
unity. The space or time-averaged value of ~b I corresponds to the "void fraction" which 
is usually used in two-phase flow analysis. The averaged void fraction takes a continuous 
value between zero and unity. 

Now, for each phase (k = 1, 2), one denotes density by Pk, velocity by vk, internal energy 
per unit mass by U~, pressure by Pk, the stress tensor by ~k, external force per unit mass 
by Fk, the heat flux vector by ~ and the external heat source by Qk. These quantities are 
defined only in each phase (region for Ok --- 1). Therefore, they are not the field quantities 
which are defined in all the space and time domains under consideration. One then 
multiplies these quantities by the characteristic function of each phase: 

¢~p~, ~:~, ~u~,  ~k/'~, ~:~, ¢~1~, ~qk, ~Q~. 

These quantities can be regarded as the field quantities. In this way, the physical 
parameters in two-phase flow are represented locally and instantaneously as the field 
quantities. 

One should note the following relations concerning the characteristic functions: 

(q~k)" = ~bk (k = 1, 2) [7] 
and 

dPkckj = 0 (k ~Aj; k , j  = 1, 2). [8] 

These relations are evident from [4]-[6]. Using [7] and [8], the product of any two of the 
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field quantities, q~kAk and c~kBk, can be given by 

(c~kAk)(c~kBk) = c~A~Bk. [9] 

Here the product operator includes scalar, vector and tensor products. 
Besides the field quantities of two-phase flow described above, there are other important 

field quantities concerning the interface. For this purpose, the local instant interfacial area, 
a~(x, y, z, t), can be conveniently used. The local instant formulation of the interfacial area 
concentration has been obtained already by Kataoka et al. (1984) in terms of distribution 
since the Lebesgue measure of an interface in three-dimensional space is zero; it is given 
by 

ai(x, y, z, t) = ]grad f l S ( f ( x ,  y, z, t)), [10] 

where 

/I iv i i', 
Igradfl = ~v/L~-xx ) +L~yy ) -I- \ ~ z ] "  [ll] 

Here, 6(w) is the distribution, usually called "the 6-function" (Dirac 1958; Schwartz 1950, 
1961) and defined by 

i v 6(w - a)~b(w)dw = ~,(a). [12] 

Here, ~b (w) is an arbitrary function which is continuous at w = a. The 6-function is related 
to the Heaviside function by (Schwartz 1950, 1961) 

d 
-d--wwh(W) = 6(w). [13] 

Here, differentiation is in the meaning of distribution, which is defined by Schwartz (1950, 
1961). In relation to the interface, one denotes interfacial energy per unit interfacial area 
by Us, interfacial force per unit interfacial area by Fs, interfacial area generation rate per 
unit interfacial area by Fs and velocity of the interface by v~. 

3. LOCAL INSTANT FIELD EQUATIONS OF TWO-PHASE FLOW 

Based on the physical parameters of two-phase flow, defined as the field quantities in 
section 2, one can formulate the local instant field equations of mass, momentum and 
energy conservation of two-phase flow. 

Firstly, the conservation of mass will be considered. Since the mass of the interface can 
be regarded as zero, the density of the two-phase media can be given by 

2 

X 
k=l 

When there is no net mass generation in the two-phase media as a whole, the local instant 
field equation of the mass conservation of two-phase flow is given by 

Here, differentiation is in the meaning of distribution (Schwartz 1950, 1961). Equation [14] 
is the field equation which determines the density field of two-phase flow. It describes the 
mass conservation of two-phase media at any time and in any position, i.e. in phases 1 
and 2 and at the interfaces. This can be confirmed in the following manner. 

Equation [14] can be rewritten as 

{ to,,, ]} ( ) ~" @,LO t +div(p,v,)  + ~ p k - ~ - + p ,  vk'gradga, =0,  [151 
k = l  k = l  

where • means the scalar product of two vectors. In each phase, or in the region where 
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f (x ,  y, z, t) ~ O, [15] becomes 

0P, 
+ div(pkvk) = 0 (k -- I, 2). [16] 

0t 

Equation [16] is consistent with the fact that within each phase, the single-phase mass 
conservation equation must be satisfied. 

On the other hand, at the interface or in the region where f(x ,  y, z, t) = 0, [15] becomes, 
in view of  [4]-[6] and [13], 

k ~ l  

where, p~ and % are the values of  Pk and vk at the interface; defined by 

Phi= limit Pl, [18] 
f ( x ,  y, z, t) ~ + O 

Vii = limit v~, [19] 
f ( x ,  y ,  z,  t) ~ + 0 

P2~= limit p: [20] 
f ( x ,  y. z, t ) ~  --O 

and 

v2~= limit vs. 
f ( x ,  y, z, t).-* --O 

Geometrical consideration of  a moving surface shows that 

0f 
- Ot -- vi" grad f,  

g r a d f  
n i l  = tgradf l  

and 

[211 

[22] 

[23] 

g r a d f  [24] 
n~i -- [gradfJ " 

Here, n~(k = 1, 2) are the outward unit normal vectors of  each phase, as shown in figure 1. 
Substituting [22]-[24] into [17], and in view of [12], one obtains 

2 

[ -  p~(v~ - vi)" n~ ] - 0. [25] 
k - I  

In [25], the value -p,~(v~ - vi)" n~ represents the mass flux of  phase k at the interface. Since 
there is no mass generation at the interface, the sum of the mass fluxes of  both phases must 
be zero. Therefore, [25] indicates the mass balance at the interface. This relation has been 
derived by Striven (1960), Standard (1964), Ishii (1975), Delhaye (1974) and others from 
integral theorem, and is sometimes called the "local instant mass jump condition". 

Phose I / ~/~ 

Interface 
Fig. I. Outward unit normal vectors of each phase at the interface. 
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Thus, as shown in [16] and [25], it is confirmed that [14] satisfies two-phase mass 
conservation in both phases and at the interface. Therefore, the local instant field equation 
of mass conservation of two-phase flow can be represented by [14]. 

It should be noted that in [17], the term 6 ( f )  appears as a result of the differentiation 
of the characteristic function in the meaning of distribution. As shown in [10], this term 
is related to the local instant interfacial area concentration, derived previously by Kataoka 
et al. (1984). Equation [10] is originally derived from geometrical consideration of the 
interface. Here, the interfacial area concentration is consistently derived from the local 
instant field equation of mass conservation. 

In the following, the conservation of momentum of two-phase flow will be described. 
Since the momentum of the interface is considered to be zero, the momentum of the 
two-phase media per unit volume is given by 

2 

(~kPkVk). 
k = l  

On the other hand, the force applied to a unit volume of the two-phase media is given 
by 

- grad (~ke,)  + div (~,~k) + ~] (~kPkFk) + Fsa~. 
k = l  k = l  k= l  

Here, F~ represents the surface tension force per unit interfacial area; as will be shown later, 
it is balanced by the difference of pressure, shear stress and momentum flux between the 
phases. Since a~ is defined as the interfacial area per unit volume, the product F,a~ 
represents the surface tension force acting on a unit volume of two-phase media containing 
the interface. Therefore, the local instant field equation of conservation of momentum of 
two-phase flow is given by 

+ div (@kZ,) + ~ (@,p,F,) + F,a,. [26] 
k = l  k = l  

Here, the differentiation is in the meaning of distribution (Schwartz 1950, 1961). This is 
natural because [26] already includes the &function as a term of the interracial area 
concentration, ai = Igradf l~(f) .  The term VkV k is a dyadic tensor. 

Equation [26] is the field equation which determines the velocity field of two-phase flow. 
It satisfies the momentum conservation of two-phase media at any time and at any 
location, i.e. within both phases and at the interface. This can be confirmed in detail as 
shown below. 

In a similar way to the mass conservation equation, in view of [4]-[6], [10]-[13] and 
[22]-[24], [26] can be rewritten as 

~b, d (p,v,) + div(p,v,v,) + [ - - p i i v k i  • (Vki  - -  vi)n,iai ] 
k = l  I 

2 2 

= ~ [~bk(--grad Pk + div rk + PkFk)] + ~ [(P~nki -- rig," z~)ai] + Fsai. [27] 
k = l  k = l  

Here, Pk~ and z~ are the values of Pk and z, at the interface, defined in the same way as 
[18]-[211. 

In each phase, or in the region where f ( x , y , z ,  t ) SO ,  [27] becomes 
c~ 
& (p, Vk) + div(p,v,v,) = -g rad  P, + div z, + p,F k (k = 1, 2). [28] 

This equation is the single-phase momentum conservation equation, which is naturally 
satisfied within each phase. 
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On the other hand, at the interface, or in the region wheref(x, y, z, t) = 0, [27] becomes, 
in view of [10] and [12], 

2 

[p~v~ • (v~ - vi)n~ + naP~ - n~. ~ ]  + F, = 0. [29] 
k - l  

Equation [29] represents the balance of the forces exerted upon the interface, which is 
consistent with the fact that the interface has no mass and momentum. This relation has 
been derived by Scriven (1960), Standard (1964), Ishii (1975), Delhaye (1974) and others 
from integral theorem, and is sometimes called the "local instant momentum jump 
condition". 

From [28] and [29] it has been confirmed that [26] satisfies the momentum balance of 
two-phase flow within both phases and at the interface. Therefore, [26] is the local instant 
field equation of two-phase momentum conservation. 

Finally, one considers the energy balance of two-phase media. The internal energy, 
kinetic energy and interfacial energy of two-phase media per unit volume is given by 

2 

[~Pk(Uk + ~Vk)] + UW~. k=l 
On the other hand, the energy generated in and entering the unit volume and the work 
applied to the unit volume are represented by 

--div[~=l (qbkqk)] --div [~= (~bkPkYk)] + diV[k~=l (~kTk " Vk) 1 

2 2 
+ ~ (~kpkFk'vk) + ~ (~Qk)+(Fs'v~+r~Us)a,. k=l k = l  

Then, the local instant field equation of conservation of total energy of two-phase flow 
can be given by 

O i :  ) 

= - d i v  [,~ (t~kqk)]- div [k=~ (~kPkVk)]+div[k~(C~kZk'Vk)] 
2 2 

+ 2 (~kPkFk "Vk) + 2 (~kQk) + (F, .v~ + F, U,)a~. 
k = l  k = l  

[301 

Here, again, differentiation is in the meaning of distribution (Schwartz 1950, 1961), which 
is natural since [30] includes the 6-function as the interfacial energy term, (F s • vi + Fs Us)t~. 
Equation [30] is the field equation which determines the energy field of two-phase flow. 
It satisfies the total energy conservation of two-phase media at any time and any location 
under consideration, i.e. within both phases and at the interface. This can be confirmed 
in the following manner. 

Similarly to the mass and momentum conservation equations, in view of [4]-[61, [10]-[131 
and [22]-[24], [30] can be rewritten as 

i 2 divLok(Uk + ½V~)Vk] + ai \ t~t + v,. grad Us k-i ~'k ~ Lo~(U~ + ~v~)] + 

+ k., [ -  o,~(uk~ + ~,,,~)(,,,~ - , ',)- n,.a,] + Vs k ot + div(aivi) 

2 

= ~ {~k[--div qk -- div(PkVk) + div('rk" Vk) + pkFk" Vk + Qk]} 
k = l  

2 

+ ~ {[n~i • ~ + e~v~ .n~ - n~" (~k~" v~)la~} + (Fs .v~ + r~U~)a~. k=l 
[311 
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On the other hand, the conservation of  the interfacial area concentration is given by 
Kataoka (1985): 

~t (ai) + div(aivi) = Fsai. [32] 

Here, U~ and tl~ are the values of  U, and qk at the interface, defined in the same way as 
[18]-[21]. 

Within each phase, or in the region where f (x ,  y, z, t ) ~  0, [31] reduces to 

_ _  1 2 " I 2 ~t [p,(U, + ~Vk)] + dW[Pk(Uk + ~Vk)Vk] = --div q* - div(Pkvk) 

+ div(z," v,) + pkF," v, + Qk (k = 1, 2). [33] 

Equation [33] is the single-phase total energy conservation equation of each phase. It is 
natural that within each phase, the fluid behaves as a single-phase fluid and obeys the 
single-phase energy balance law. Therefore, [33] is naturally satisfied within each phase. 

On the other hand, at the interface, or in the region wheref(x,  y, z, t) = 0, [31] becomes, 
in view of [10], [12] and [32], 

2 
_ _  1 2 __ ~t + vi "grad Us = ~ [p~(U~ + ~v~)(v~ vi)" n~ + n~. q~ 

k=l 

+P~n~.v~-n~.(z~.v i)]+Fs.vi. [34] 
The l.h.s, of [34] represents the increasing rate of interfacial energy per unit interfacial area. 
On the other hand, the r.h.s, represents the total energy flux by convection, heat flux into 
the interface and the work exerted on the interface by pressure, stress and interfacial force. 
Therefore, [34] represents the total energy conservation at the interface. This relation has 
been derived by Scriven (1960), Standard (1964), Ishii (1975), Delhaye (1974) and others 
from integral theorem, and is sometimes called the "local instant energy jump condition". 

Thus [33] and [34] confirm that [30] satisfies the total energy-balance law within each 
phase and at the interface. Therefore, [30] is the local instant field equation of conservation 
of total energy of two-phase flow. 

4. S I N G L E - F I E L D  R E P R E S E N T A T I O N  OF THE LOCAL INST ANT  
C O N S E R V A T I O N  E Q U A T I O N  

In the local instant field equations of  mass, momentum and energy conservation of  
two-phase flow, [14], [26] and [30], one has considered two sets of  density, velocity and 
energy fields such as ~kPk, ~,Vk and ~,(Uk + 0.Sv~) etc. for k = 1 and 2. This representation 
enables one to formulate the local instant field equations of  two-phase flow in a natural 
way from the basic principles of  conservation of  mass, momentum and total energy. 

However, in view of  the characteristic functions of  both phases, [4] and [5], one can 
combine these two sets of  density, velocity and energy fields into one. In view of the nature 
of  the characteristic function ~k, one introduces the following field quantities of  density, 
velocity and energy etc.: 

2 2 

P = Z ' = Z ¢,v,, 
km| k-I 

2 2 

v = Y. 4,, v , ,  P = Z 4, ,P, ,  
k = I  k = l  

2 2 

= T_, v = Z +,v,, 
k = l  k = l  

2 2 

q= Z ~*~ and Q= Z ~kQk" 
k = l  k = l  

[35] 
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These quantities can be regarded as the field quantities because they are defined uniquely 
at almost every point in time and space. Using the relations satisfied by Ok, i.e. [7]-[9], the 
products of these field quantities can be given by 

A B C  . . . .  (k~l~)kAk)(k~ffil~)kBk)(k~ffil(~kCk) . . . .  ~ffil~kAkBkCk . . . .  [36] 

where A, B, C . . . .  represent any of the field quantities in [35]. 
Based on the field quantities in [35] and the relations given by [36], one can rewrite the 

local instant field equations of mass, momentum and total energy of two-phase flow, [14], 
[26] and [30]: 

mass conservation 

and 

momentum conservation 

ap 
a t  + div(pv) = 0; [37] 

a 
at (p v) + div(p w) = - grad P + div z + p F + Fs ai; [38] 

total energy conservation 

a a 
at Lo(U + ½v2)] + divLo (U + ½v2)v] + ~ (Usai) + div(Usa~vi) 

= - d i v q  - div(Pv) + div(z • v) + p F .  v + Q + (F s • v~ + F,U,)a~. [39] 

Here, differentiation is in the meaning of distribution. Because only one set of field 
quantities of density, velocity and energy are used here, [37]-[39] may be called the 
"single-field representation of the local instant field equations of two-phase flow" here. 

When the interfacial force and inteffacial energy terms are negligible, [37]-[39] become 
exactly the same as the differential equations of mass, momentum and total energy 
conservation in single-phase flow, except in the definition of differentiation. 

In view of the above, interesting information can be deduced. In the approximation of 
negligible interracial force and energy, single- and two-phase flow satisfy the same 
conservation equations of mass, momentum and energy. The solutions in the ordinary 
notion of a function represent single-phase flow and the solutions in the meaning of 
distribution represent two-phase flow. This conclusion gives one a clear mathematical 
interpretation of the thermofluid dynamics of single- and two-phase flows. 

5. LOCAL INSTANT TWO-FLUID FORMATION OF TWO-PHASE FLOW 

The local instant formulation of mass, momentum and energy conservation of two- 
phase flow, [14], [26] and [30] has another possible form. Each conservation equation can 
be divided into two equations, each of which includes the field quantities of only one phase. 

Firstly, one considers the mass conservation equation [14]. In this equation, two sets of 
field quantities, i.e. t~kPk and ~kVk for k ffi 1 and 2, are used. However, is convenient to 
obtain the field equations which include the field quantities of only one phase, i.e. ~kPk 
and ~k V, for k = 1 or 2. In view of [10]-[25], consider the following equation: 

a 
at (~kPk) + div(~kpk Vk) = --p~(vki -- Vi)" nkiai (k = 1, 2). [40] 

Here, again, differentiation is in the meaning of distribution. 
Equation [40] is valid at any time and any location under consideration. Thus, it can 

be regarded as the local instant field equation of mass conservation, which includes the 
field quantities of only one phase. This is verified below. 
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Within phase k or in the region of  Sk = 1, [40] can be given by 

bP--2k + div(pkvk) = 0 (k = l, 2), [41] 
at 

which naturally satisfies the mass conservation law within phase k. 
On the other hand, in the other phase, or in the region of  Sk = 0, [40] is naturally valid 

because both sides of  [40] become zero. 
Finally at the interface, in view of  [10]-[13] and [22]-[24], the l.h.s, of  [40] becomes 

(1.h.s. of  [40]) = -p~(v~ - vi) "n~ai (k = 1,2), [42] 

which means [40] is valid at the interface. Therefore, it is clear that [40] is the local instant 
field equation of  mass conservation of  phase k. Equation [40] treats each phase separately. 
This treatment is similar to those adopted by Ishii (1975), Delhaye (1968), Delhaye et al. 
(1981), Bout6 (1975) and Wallis (1969). However, they derived the field equations in 
temporal- or space-averaged forms. On the other hand, [40] is in the form of local instant 
conservation. Therefore, here, [40] may be called the "local instant two-fluid formulation 
of  mass conservation of  two-phase flow". 

Since [40] is the divided forms of  [14], when one adds the two differential equations 
(equations for k = 1 and 2 in [40]), one obtains 

a-~ (~kPk) + div (~,~p~v,~) = - ~ [p~(v~ -- v~)" n~a~]. [43] 
k = l  k = l  k = l  

In view of  [25], [43] coincides with [14] correctly. 
In a similar manner, the local instant two-fluid formulation of  momentum conservation 

can be obtained. In view of [26]-[29], this is given by 

~t (~k Pk Vk) + div(~bk Pk Vk Vk) = -- grad(~k Pk) + div(t~k Xk) + t~k P* Fk 

+ {--[p~vki "(Va -- vi)n~] -- e~n~ + n~. ~}a i  (k = 1, 2). [44] 

Here, differentiation is in the meaning of  distribution. Equation [44] is valid at any time 
and any location under consideration, which is confirmed in the following. 

Within phase k, or in the region of  ~bk = 1, [44] becomes 

t~t (PkVk) + div(p, VkVk) = --grad Pk + div Zk + pkFk (k = 1, 2), [45] 

which is valid within phase k. Within the other phase, or in the region of  ~b, = 0, [44] is 
naturally valid because both sides of  [44] become zero. 

At the interface, in view of  [10]-[13] and [22]-[24], the 1.h.s. of  [44] reduces to 

(1.h.s. of  [44]) = --[pkiV~" (Vki -- vi)nki]ai (k = l, 2). [46] 

On the other hand, the r.h.s, of  [44] becomes 

(r.h.s. of  [44]) = (P~n~ - n~ "z~)ai + {--[pkiVki'(Vki- vi)n,i ] 

- Pi, in~ + n,i" zki}a  i ---- - - [Pk iVk i  " ( V k i -  vi)nki ]a  i (k = 1, 2). [47] 

Equations [46] and [47] show that [44] is valid at the interface. Thus, [44] is the local instant 
two-fluid formulation of  momentum conservation of  two-phase flow. 

Summing up the two differential equations which are obtained by putting k = 1 and 
k = 2 in [44], one obtains 

o[± I ] [; ] (~kPkVk) + div ~ (~bkpkvkv~) = --grad (q~kPk) 

+ d i v  (~b, zk) + ~ (q~kp, Fk) 
=1 k = l  

2 

+ Y, {-[p~iv~i . (vk~- v~)n~i] - t'~in~ + n~. ~}a~.  [48] 
k = l  
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In view of  [29], [48] exactly coincides with [26]. Therefore [44], the two-fluid formulation, 
can be regarded as the divided equations of  [26]. 

Finally, the local instant two-fluid formulation of total energy conservation is consid- 
ered. In view of  [30]--[34], this is given by 

_ _  l 2 bt [~kPk(Uk + ½~)] + div[4~kPk(Uk + ~Vk)Vk] 

= --diV(~kqk) -- diV(~kPkVk) ÷ diV(~kZk " Vk) ÷ OkpkF~" Vk ÷ (akQk 

+ [ - p ~ ( U ~  + ½~) (v~  - vi)" n~ - n~.  ~ - P ~ v ~ .  n~ + n~.  (T~. v~)]ai 

(k=l ,2) .  [49] 

Here, again, differentiation is in the meaning of distribution. Equation [49] is valid at any 
time and any location under consideration, which is verified in the following. 

Within phase k, or in the region of  ~bk = l, [49] becomes 

_ _  I 2 t~t LOk(Uk + ½~)] + divLok (Uk + ~Vk)Vk] 

= --divth -- div(PkVk) + div(zk "Vk) + pkFk "Vk + Qk (k = 1, 2), [50] 

which is naturally valid within phase k. One the other hand, within the other phase, or 
in the region of ¢~k = 0, [49] is naturally valid because both sides of [49] reduce to zero. 

At the interface, in view of  [10]-[13] and [22]-[24], the l.h.s, of  [49] becomes 
I 2 (1.h.s. of  [49]) = - [p~(U~ + ~v~)(v~ - vi) • n~]ai (k = 1, 2). [51] 

On the other hand, the r.h.s, of  [49] becomes 

(r.h.s. of  [49]) = 

[n~. q~ + P~ v~.  n~ - n~.  (T~. v~)]ai 

+ [-p~(U~ + ½v~,-) (% - vi) .n~ - n~ .q~ - P~v~ .n~ 
l 2 

÷ n k i "  ( l :k i "  Vk i ) ] a i  = - - [ P k i ( U k i  ÷ i V k i ) ( V k i  - -  V i ) "  n ~ ] a i  (k = 1, 2 ) .  [ 5 2 ]  

Equations [51] and [52] mean [49] is valid at the interface. Thus, [49] is the local instant 
two-fluid formulation of total energy conservation. 

When one takes the summation of the two equations with k = 1 and k = 2 in [49], one 
obtains 

0{± } {2 } Ot [~kPk(U~ + ½V~)] + div [~Ok(U~ + ½V~)Vk] 
kffil 1 

= - d i v  [ ~ ,  ( t ~ k ~ ) ] -  div [ ~  1 (~b~P,v~)] + die [k~, (~bk~k " Vk) 1 

2 2 

+ ~, (dP~PkF~" Vk)+ E (~kQk) 
k - I  k - I  

2 

+ ~, [-p~(U~ + ½v~)(% - vi)' n~ - nki" qki-  P~V~" n~ + n~(x~, v~)]ai. [53] 
k - I  

In view of [32] and [34], [53] exactly coincides with [30]. Therefore, [49] can be regarded 
as the divided equations of [30]. 

Thus, the local instant two-fluid formulation of mass, momentum and energy conser- 
vation equations, [40], [44] and [49], have been obtained. This formulation consists of  two 
sets of  local instant field equations of mass, momentum and total energy conservation of  
both phases. In other words, there are six differential equations which determine the 
density, velocity and energy fields of  both phases. As shown in [40], [44] and [49], any one 
of these six equations has the field quantities concerning only on phase. However, these 
six equations are dependent on each other through the interracial terms. 
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As shown in [40], [44] and [49], the interfacial transfer terms appear as the source terms 
at the interface. Therefore they are given in terms of the local instant interfacial area 
concentration a~, which is represented by distribution. As shown in [40], the interfacial 
mass transfer terms are given by 

- -  Pki (Vki - -  V i ) "  nki a i  (k = 1, 2). 

They are related to each other in the interfacial mass balance, given by [25]. 
As shown in [44], the local instant interfacial momentum transfer terms are given by 

{ - - [ p k i v t i "  (Vti - -  v i )nk i  ] - -  P~n~ + n ~ .  zk i}a  i (k = 1, 2). 

These terms are related to each other through the interfacial momentum balance, given 
by [29]. 

In view of [49], the local instant energy transfer terms are given by 
I 2 [--Pki(U~ + iv~)(v~ -- vi)" n~ -- n~. q~ -- Pav~. n~ + n~. (z~. va)]ai (k = 1,2). 

These terms satisfy the relation given by [34]. 
Furthermore, the six equations in the two-fluid formulation include the characteristic 

function of  each phase, ~bk(k = 1, 2). The characteristic function puts further constraints 
on the two-fluid formulation. In view of  [4]-[6], these constraints are given by 

2 

~b~ = 1 [54] 
k~ l  

and 

~bkq~ j = 0 (k :C-j). [55] 

Now the complete description of the local instant two-fluid formulation of the mass, 
momentum and total energy conservation of two-phase flow has been obtained. This 
formulation is composed of  the six conservation equations of mass, momentum and total 
energy ([40], [44] and [49]) and the constraint equations for the interfacial transfer terms 
([25], [29] and [34]) and the characteristic functions ([54] and [55]). 

6. CONCLUSIONS 

The local instant field equations of two-phase flow have been formulated by introducing 
the notion of distribution which is an extended notion of a function. The difficulties in 
differentiation of  the discontinuous function and in representation of the source terms at 
the interface, which appear in the local instant formulation, have been overcome by using 
distribution. 

The physical parameters of each phase, such as density, velocity and energy etc., have 
been expressed as the field quantities in terms of  the characteristic functions of  both phases. 
The local instant volume fractions are conveniently defined by these characteristic 
functions. In addition to these parameters, the field quantities related to the interface have 
been introduced in terms of the local instant interfacial area concentration. 

Based on the field quantities of two-phase flow thus defined, the local instant field 
equations of mass, momentum and energy conservation in two-phase flow have been 
rigorously formulated. The mass conservation equation is given by [14], the momentum 
conservation equation by [26] and the total energy conservation equation by [30]. In the 
momentum and total energy conservation equations, the interfacial force and the 
interfacial energy terms appear as source terms at the interface. 

The two sets of field quantities, which have been defined for both phases, have been 
combined into one set. The newly defined set of field quantities has simplified the local 
instant field equations described above and gives the single-field representation of the local 
instant conservation equations of  mass, momentum and total energy which are given by 
[37]-[39], respectively. 
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In the approximation of the negligible interfacial force and energy, the conservation 
equations of  this representation coincide with the conservation equations of single-phase 
flow, except in the definition of differentiation. This indicates that the field quantities of 
single- and two-phase flow can be given as the solutions of  the same conservation equations 
of  mass, momentum and energy. Single-phase flow corresponds to the solution in the 
meaning of  the ordinary notion of a function, whereas two-phase flow corresponds to the 
solutions in the meaning of distribution. 

The local instant two-fluid formulation of two-phase flow has also been derived. Two 
sets of  mass, momentum and total energy conservation equations ([40], [44] and [49]) have 
been derived. Each of these six equations has the field quantities concerning only one 
phase. However, these equations are dependent on each other through the inteffacial 
transfer terms. The constraint equation for the interfacial transfer of mass is given by [25], 
that of momentum by [29] and that for total energy by [34]. Furthermore, the constraint 
equations for the characteristic functions are given by [54] and [55]. 

The local instant formulation derived here is one of  the most rigorous formulations of 
two-phase flow. When the field equations in this formulation are solved under appropriate 
initial and boundary conditions, the behavior of two-phase flow can be predicted very 
accurately. In particular, in analyzing the microscopic characteristics of  two-phase flow, 
such as turbulence etc., this local instant formulation is indispensable. 

Furthermore, this formulation constitutes a useful tool in evaluating the applicability 
of the various simplified models of  two-phase flow. 

N O M E N C L A T U R E  

a~(x, y, z, t) = Local instant interfacial area concentration 
Ak, Bk, C, = Physical parameters of phase k (k = 1, 2) 
f ( x ,  y, z, t ) =  Function representing the interface 

F = External force per unit mass, defined by [36] 
Fk = External force per unit mass of phase k (k = 1, 2) 
Fs = Interfacial force per unit interfacial area 

h(w) = Heaviside function 
n ~  --- O u t w a r d  unit normal vector of phase k (k = 1, 2) 
P = Pressure, defined by [36] 

Pk = Pressure of  phase k (k = 1, 2) 
P~ = Pressure of  phase k at the interface (k = 1, 2) 

q = Heat flux vector, defined by [46] 
ch = Heat flux vector of  phase k (k = 1, 2) 
(h = Heat flux vector of phase k at the interface (k = 1, 2) 
Q = Heat generation rate per unit volume, defined by [36] 
Qk = Heat generation rate per unit volume of phase k (k ffi 1, 2) 

t ffi Time 
T(w) = Distribution 

U = Internal energy per unit mass, defined by [36] 
Uk = Internal energy per unit mass of phase k (k = 1, 2) 
U~ = Internal energy per unit mass of phase k at the interface (k = 1, 2) 
Us = Interfacial energy per unit interfacial area 
v = Velocity, defined by [36] 
vi = Velocity of the interface 
Vk = Velocity of phase k (k = 1, 2) 
v~ = Velocity of phase k at the interface (k = 1, 2) 

Vkx, Vky, V~z ffi X, y-,  and z-components of the velocity of phase k (k ffi 1, 2) 
w = Variable 

x, y, z = Space coordinates 
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Greek symbols 
Fs = Generation rate of interfacial area concentration per unit interfacial area 

6(w) = The 6-function 
P 

P, 
P~ 

17 k 

~Cki 

4~,(x, y, z, t) 
O(w) 

= Density, defined by [36] 
= Density of phase k (k = 1, 2) 
= Density of phase k at the interface (k = 1, 2) 
= Stress tensor, defined by [36] 
= Stress tensor of phase k (k = 1, 2) 
= Stress tensor of phase k at the interface (k = 1, 2) 
= Characteristic function of phase k (k = 1, 2) 
= Arbitrary function 
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